36 mois

BIOMIMETISM AND BIOINSPIRATION OF THE ANGUILLIFORM SWIM OF A SNAKE

[TheChamp-Sharing]
The performance of aquatic locomotion is closely related to the circulation of the flow around the animal's body and primarily to the intensity of the induced flow downstream of the tail and its characteristics. This developing wake consists in a Von Karman street vortices whose vortices are periodically emitted with each flap of the tail. The way the tail moves in the fluid (angle of attack, amplitude, frequency ...) determines the swimming performance. Animals can adjust their swimming kinematics to optimize their performance. Different criteria can define performance, such as energy efficiency, maximum speed (prey-predator system), or even stealth. The shape of the body and the tribological properties of the skin, which influence the propulsion and drag produced by swimming animals, must be taken into account. The central objective of this thesis is to contribute to the development of a numerical model based on real data such as geometry, kinematics, skin texture (data-driven numerical modeling) in order to simulate the complex phenomena of unsteady fluid-structure interaction (FSI), involved in anguilliform swimming within an incompressible viscous flow in the presence of a free surface.The aim is to identify the hydrodynamic mechanisms that will allow us to obtain estimates of the efficiency of this swimming in terms of propulsive force and energy efficiency, based on the kinematic and velocimetric data that characterize the swimming of snakes. This thesis work is part of a larger ANR (Dragon II) project in which biologists, fluid mechanics, mathematicians and roboticists are involved. A strong link will be maintained with the experimentalists of the project and experimental data on the swimming of real snakes and bio-inspired robots will be made available in order to validate the numerical model. The candidate will be required to participate in measurement campaigns at the Ecole Supérieure de Physique et de Chimie Industrielles in Paris, at the PPRIME Institute in Poitiers and at the Center for Biological Studies in Chizé .
Philippe Traoré (PPRIME Poitiers) - Contacter
Michel Bergmann (Inria Bordeaux – Sud-Ouest) - Contacter
BIOMIMETISM AND BIOINSPIRATION OF THE ANGUILLIFORM SWIM OF A SNAKE

Autres offres d'emploi

Retour à la liste
12 months

POST-DOC (M/F) - Control by Machine Learning of bluff body wakes

At the CNRS-Laboratory PPRIME, based at the Futuroscope, this post-doctorate position is part of the French ANR COWAVE program between the laboratories PRISME in Orleans, Pprime in Poitiers, LHEEA in Nantes and the PSA automotive industry. This Post-Doc position concerns the Pprime contribution to the COWAVE project which aims the experimental exploration of closed-loop wake control strategies with mobile flaps in a water tunnel facility. Three-dimensional bluff-body wakes generate pressure drag and side forces and thus contribute significantly to the fuel consumption and pollutant emission of road vehicles. Despite this crucial impact and the numerous attempts to reduce harmful environmental effect of bluff body wakes by flow control it is still unclear what is the most efficient control strategy! In this context, the ANR project COWAVE addresses two fundamental aspects of wake control: - First, what kind of actuators are most efficient? While most closed-loop control strategies use viscous entrainment effects to actuate the shear layers in the wake, the exploitation of pressure forces produced by mobile deflectors could be an interesting alternative to be tested. - Second, for the implementation of closed-loop control, we want to test if control strategies obtained by machine learning techniques allow to obtain better efficiency and robustness than the more classical model-based approaches? The proposed Post-Doc position is part of the French ANR COWAVE program between the laboratories PRISME in Orleans, Pprime in Poitiers, LHEEA in Nantes and the PSA automotive industry. This Post-Doc position concerns the Pprime contribution to the COWAVE project which aims the experimental exploration of closed-loop wake control strategies with mobile flaps in a water tunnel facility. APPLY Follow link / Application Deadline : 12 March 2021 https://bit.ly/3qDG6Ml